Linear Algebra and Inverse Problems
نویسنده
چکیده
Inverse problems arise in many important applications, including medical imaging, microscopy, geophysics, and astrophysics. Because they often involve large scale, extremely ill-conditioned linear systems, linear algebra problems associated with inverse problems are extremely challenging to solve, both mathematically and computationally. Solution schemes require enforcing regularization, using for example prior information and/or by imposing constraints on the solution. In addition, matrix approximations and fast algorithms for structured matrices must be employed. The speakers in this minisymposium will report on recent research developments involving linear algebra aspects of inverse problems, including algorithms and other computational issues.
منابع مشابه
A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملMax-Plus algebra on tensors and its properties
In this paper we generalize the max plus algebra system of real matrices to the class of real tensors and derive its fundamental properties. Also we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverses of tensors is characterized.
متن کاملA Quasi Monte Carlo Method for Large-Scale Inverse Problems
We consider large-scale linear inverse problems with a simulation-based algorithm that approximates the solution within a low-dimensional subspace. The algorithm uses Tikhonov regularization, regression, and low-dimensional linear algebra calculations and storage. For sampling efficiency, we implement importance sampling schemes, specially tailored to the structure of inverse problems. We empha...
متن کاملOn the duality of quadratic minimization problems using pseudo inverses
In this paper we consider the minimization of a positive semidefinite quadratic form, having a singular corresponding matrix $H$. We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method. Given this approach and based on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010